Inverse focusing inside turbid media by creating an opposite virtual objective
نویسندگان
چکیده
Limited by the penetration depth, imaging of thick bio-tissues can be achieved only by epi-detection geometry. Applications based on forward-emitted signals or bidirectional illumination are restricted by lack of an opposite objective. A method for creating an opposite virtual objective inside thick media through phase conjugation was first proposed. Under forward illumination, the backward scattering light from the media was collected to generate a phase conjugate wave, which was sent back to the media and formed an inverse focusing light. Samples combined with a diffuser or a mouse skin were used as specimens. Inverse focusing was successfully demonstrated by applying holography-based optical phase conjugation with a BaTiO3. This result indicates the capability to create an opposite virtual objective inside live tissues. The proposed method is compatible with current coherent imaging and super-resolution imaging technologies. It creates a possible way for forward-emitted signals collection and bidirectional illumination in thick specimens.
منابع مشابه
Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media.
We demonstrate focusing coherent light on a nanoparticle through turbid media based on digital optical phase conjugation of second harmonic generation (SHG) field from the nanoparticle. A SHG active nanoparticle inside a turbid medium was excited at the fundamental frequency and emitted SHG field as a point source. The SHG emission was scattered by the turbid medium, and the scattered field was...
متن کاملTime-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution.
Focusing light inside highly scattering media is a challenging task in biomedical optical imaging, manipulation, and therapy. A recent invention has overcome this challenge by time reversing ultrasonically encoded diffuse light to an ultrasound-modulated volume inside a turbid medium. In this technique, a photorefractive (PR) crystal or polymer can be used as the phase conjugate mirror for opti...
متن کاملDirect imaging of fluorescent structures behind turbid layers.
We present a method to directly image fluorescent structures inside turbid media. This is based on wave-front shaping to optimize the scattered light onto a single fluorescent particle, as the optical memory effect for a scanning image of the surroundings of this particle. We show that iterating the optimization leads to the focusing on a single particle whose surroundings are subsequently scan...
متن کاملThree-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations.
The one-dimensional Marchenko equation forms the basis for inverse scattering problems in which the scattering object is accessible from one side only. Here we derive a three-dimensional (3D) Marchenko equation which relates the single-sided reflection response of a 3D inhomogeneous medium to a field inside the medium. We show that this equation is solved by a 3D iterative data-driven focusing ...
متن کاملFrequency-swept time-reversed ultrasonically encoded optical focusing.
A technique to rapidly scan an optical focus inside a turbid medium is attractive for various biomedical applications. Time-reversed ultrasonically encoded (TRUE) optical focusing has previously demonstrated light focusing into a turbid medium, using both analog and digital devices. Although the digital implementation can generate a focus with high energy, it has been time consuming to scan the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016